電路筆記:電池的電化學(xué)阻抗譜(上)
1 電路功能與優(yōu)勢
本文引用地址:http://www.eepw.com.cn/article/202004/412560.htm圖1所示的電路是電化學(xué)阻抗譜(EIS)測量系統(tǒng),用于表征鋰離子(Li-Ion)和其他類型的電池。EIS是一種用于檢測電化學(xué)系統(tǒng)內(nèi)部發(fā)生的過程的安全擾動(dòng)技術(shù)。該系統(tǒng)測量電池在一定頻率范圍內(nèi)的阻抗。這些數(shù)據(jù)可以確定電池的運(yùn)行狀態(tài)(SOH)和充電狀態(tài)(SOC)。該系統(tǒng)采用超低功耗模擬前端(AFE),旨在激勵(lì)和測量電池的電流、電壓或阻抗響應(yīng)。
老化會(huì)導(dǎo)致電池性能下降和電池化學(xué)成分發(fā)生不可逆變化。阻抗隨容量的下降而呈線性增加。使用EIS監(jiān)視電池阻抗的增加可以確定SOH以及電池是否需要更換,從而減少系統(tǒng)停機(jī)時(shí)間和維護(hù)成本。
電池需要激勵(lì)電流,而不是電壓,而且阻抗值在毫歐姆范圍內(nèi)很小。該系統(tǒng)包括向電池注入電流的必要電路,并允許校準(zhǔn)和檢測電池中的小阻抗。
2 電路描述
2.1 電池EIS理論
電池是非線性系統(tǒng);因此,檢測電池I-V曲線的一個(gè)小樣本,使系統(tǒng)呈現(xiàn)偽線性行為。在偽線性系統(tǒng)中,正弦輸入產(chǎn)生的正弦輸出頻率完全相同,但相位和振幅發(fā)生了偏移。在EIS中,向電池應(yīng)用交流激勵(lì)信號以獲得數(shù)據(jù)。
EIS中的信息常用奈奎斯特圖表示,但也可以使用波特圖顯示(本電路筆記側(cè)重常見格式)。在奈奎斯特圖中,使用阻抗的負(fù)虛分量(y軸)與阻抗的實(shí)分量(x軸)作圖。奈奎斯特圖的不同區(qū)域?qū)?yīng)于電池中發(fā)生的各種化學(xué)和物理過程(見圖2)。
這些過程使用電阻、電容和一種稱為Warburg電阻的元件來建模,Warburg阻抗用字母W表示(在等效電路模型(ECM)部分有更詳細(xì)的描述)。沒有簡單的電子元件來表示W(wǎng)arburg擴(kuò)散電阻。
2.2 等效電路模型(ECM)
等效電路模型(ECM)使用簡單的電子電路(電阻和電容)來模擬電化學(xué)過程。該模型用一個(gè)簡單的電路來表示一個(gè)復(fù)雜的過程,以幫助分析和簡化計(jì)算。這些模型基于從測試電池中收集的數(shù)據(jù)。對電池的奈奎斯特圖進(jìn)行表征后,可以開發(fā)一種ECM。大多數(shù)商業(yè)EIS軟件都包含一個(gè)選項(xiàng),用于創(chuàng)建一個(gè)特定的、獨(dú)特的等效電路模型,以更接近由任何特定電池生成的奈奎斯特圖的形狀。在創(chuàng)建電池模型時(shí),有4個(gè)常見參數(shù)表示電池的化學(xué)性質(zhì)。
1)電解(歐姆)電阻——RS
RS的特性如下:
● 對應(yīng)于電池中電解質(zhì)的電阻;
● 在進(jìn)行測試時(shí)受電極和所用導(dǎo)線長度的影響;
● 隨電池的老化而增加;
● 當(dāng)頻率>1kHz時(shí)占主導(dǎo)。
2)雙層電容——CDL
CDL的特性如下:
● 發(fā)生在電極和電解質(zhì)之間;
● 由圍繞電極的兩層平行的相反電荷組成;
● 在1Hz~1kHz頻率范圍內(nèi)占主導(dǎo)。
3)電荷轉(zhuǎn)移電阻——RCT
● 電阻是在電子從一種狀態(tài)轉(zhuǎn)移到另一種狀態(tài),即從固體(電極)轉(zhuǎn)移到液體(電解質(zhì))的過程中發(fā)生的;
● 隨電池的溫度和充電狀態(tài)而改變;
● 在1Hz~1kHz頻率范圍內(nèi)占主導(dǎo)。
4)Warburg(擴(kuò)散)電阻——W
● 表示對質(zhì)量轉(zhuǎn)移即擴(kuò)散控制的阻力;
● 典型地表現(xiàn)45°相移;
● 當(dāng)頻率<1Hz時(shí)占主導(dǎo)。
2.3 構(gòu)建電池ECM
建立等效電路模型(ECM)的過程通常以經(jīng)驗(yàn)為基礎(chǔ),需要使用各種等效電路模型進(jìn)行實(shí)驗(yàn),直到模型與測量的奈奎斯特圖匹配。
下面幾節(jié)將介紹如何創(chuàng)建一個(gè)典型的電池模型。
1)Randel電路模型歐姆和電荷轉(zhuǎn)移效應(yīng)
Randel電路是最常見的ECM。Randel電路包括電解質(zhì)電阻(RS)、雙層電容(CDL)和電荷轉(zhuǎn)移電阻(RCT)。雙層電容與電荷轉(zhuǎn)移電阻平行,形成半圓模擬形狀。
簡化的Randel電路不僅是一個(gè)有用的基本模型,而且是其他更復(fù)雜模型的起點(diǎn)。
簡化Randel電路的奈奎斯特圖始終是一個(gè)半圓。電解質(zhì)電阻(RS)是通過讀取電池特性的高頻截點(diǎn)處的實(shí)軸值來確定的,即線穿過圖左側(cè)的x軸處就是高頻區(qū)。在圖4中,電解質(zhì)電阻(RS)是接近奈奎斯特圖起源的截點(diǎn),為30Ω。另一(低頻)截點(diǎn)的實(shí)軸值是電荷轉(zhuǎn)移電阻(RCT)和電解質(zhì)電阻(本例為270Ω)的和。因此,半圓的直徑等于電荷轉(zhuǎn)移電阻(RCT)。
2)Warburg電路模型——擴(kuò)散效應(yīng)
對Warburg電阻建模時(shí),將組件W與RCT串聯(lián)添加(見圖5)。Warburg電阻的增加產(chǎn)生了45°線,在圖的低頻區(qū)很明顯(如圖6)。
2.3 組合Randel和Warburg電路模型
有些電池描繪2個(gè)半圓形。第1個(gè)半圓對應(yīng)固體電解質(zhì)界面(SEI)。SEI的生長是由電解質(zhì)的不可逆電化學(xué)分解引起的。如果是鋰離子電池,SEI則隨著電池的老化在負(fù)極處形成。這種分解的產(chǎn)物在電極表面形成一層固體。
形成初始SEI層后,電解質(zhì)分子無法通過SEI到達(dá)活性材料表面,與鋰離子和電子發(fā)生反應(yīng),從而抑制了SEI的進(jìn)一步生長。
將2個(gè)Randel電路組合起來,為這種奈奎斯特圖建模(如圖7)。電阻(RSEI)針對SEI的電阻建模(如圖8)。
2.4 使用AD5941的電池阻抗解決方案
AD5941阻抗和電化學(xué)前端是EIS測量系統(tǒng)的核心。AD5941由1個(gè)低帶寬環(huán)路、1個(gè)高帶寬環(huán)路、1個(gè)高精度模數(shù)轉(zhuǎn)換器(ADC)和1個(gè)可編程開關(guān)矩陣組成。
低帶寬環(huán)路由低功耗、雙輸出數(shù)模轉(zhuǎn)換器(DAC)和低功率跨阻抗放大器(TIA)組成,前者可產(chǎn)生VZERO和VBIAS,后者可將輸入電流轉(zhuǎn)換為電壓。
低帶寬環(huán)路用于低帶寬信號,其中激勵(lì)信號的頻率低于200Hz,例如電池阻抗測量。
高帶寬環(huán)路用于EIS測量。高帶寬環(huán)路包括1個(gè)高速DAC,用于在進(jìn)行阻抗測量時(shí)產(chǎn)生交流激勵(lì)信號。高帶寬環(huán)路有1個(gè)高速TIA,用于將高達(dá)200kHz的高帶寬電流信號轉(zhuǎn)換為可由ADC測量的電壓。
開關(guān)矩陣是一系列可編程開關(guān),允許將外部引腳連接到高速DAC激勵(lì)放大器和高速TIA反相輸入端。開關(guān)矩陣提供了1個(gè)接口,用于將外部校準(zhǔn)電阻連接到測量系統(tǒng)。開關(guān)矩陣還提供電極連接的靈活性。
電池的阻抗通常在m?范圍內(nèi),需要1個(gè)類似值的校準(zhǔn)電阻RCAL。此電路中的50m? RCAL太小,AD5941無法直接測量。由于RCAL較小,外部增益級使用AD8694來放大接收信號。AD8694具有超低噪聲性能以及低偏置和漏電流參數(shù),這對EIS應(yīng)用至關(guān)重要。此外,在RCAL和實(shí)際電池上共用1個(gè)放大器,有助于補(bǔ)償電纜、交流耦合電容和放大器產(chǎn)生的誤差。
2.5 激勵(lì)信號
AD5941使用其波形發(fā)生器、高速DAC(HSDAC)和激勵(lì)放大器來產(chǎn)生正弦波激勵(lì)信號。頻率可編程,范圍為0.015mHz~200kHz。信號通過CE0引腳和外部達(dá)林頓對晶體管配置應(yīng)用于電池,如圖9所示。需要電流放大器,因?yàn)榧?lì)緩沖器所能產(chǎn)生的電流上限為3mA。典型電池需要高達(dá)50mA。
2.6 測量電壓
有2個(gè)電壓測量階段:①測量RCAL上的壓降;②測量電池電壓。每個(gè)組件上的壓降在微伏(μV)的范圍內(nèi)很小。因此,測得的電壓通過1個(gè)外部增益級發(fā)送。增益放大器AD8694的輸出通過引腳AIN2和引腳AIN3直接發(fā)送到至AD5941芯片上的ADC。通過利用離散傅里葉變換(DFT)硬件加速度計(jì),對ADC數(shù)據(jù)執(zhí)行DFT,其中實(shí)數(shù)和虛數(shù)計(jì)算并存儲在數(shù)據(jù)FIFO中,用于 RCAL電壓測量和電池電壓測量。ADG636對電池和RCAL進(jìn)行多路復(fù)用,輸出至AD8694增益級。
需要ADG636開關(guān)的超低電荷注入和小漏電流來消除AD5941輸入引腳上的寄生電容。由于AIN2和AIN3引腳均用于RCAL測量和電池測量,阻抗測量的信號路徑是成比例的。
2.7 計(jì)算未知阻抗(ZUNKNOWN )
EIS采用比例式測量法(如圖10)。為了測量未知阻抗(ZUNKNOWN),在已知電阻RCAL上施加交流電流信號,并測量響應(yīng)電壓VRCAL。然后在未知阻抗ZUNKNOWN上施加相同的信號,并測量響應(yīng)電壓VUNKNOWN。對響應(yīng)電壓執(zhí)行離散傅里葉變換,確定每次測量的實(shí)值和虛值??墒褂孟率接?jì)算未知阻抗:
(未完待續(xù))
參考文獻(xiàn):
[1] CN0510:Electrochemical Impedance Spectroscopy (EIS)for Batteries[R/OL].www.analog.com/CN0510.
(注:本文來源于科技期刊《電子產(chǎn)品世界》2020年第05期第32頁,歡迎您寫論文時(shí)引用,并注明出處。)
下篇鏈接:電路筆記:電池的電化學(xué)阻抗譜(EIS)(下) http://www.eepw.com.cn/article/202005/413598.htm